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Abstract
The goal of this work is to show that the numerical solution of the obstacle
scattering problem based on the modified Rayleigh conjecture (MRC) method
is a competitive alternative to the boundary integral equations method, and
that it has numerical advantages which may be especially important in three-
dimensional scattering problems with non-smooth domains, for example, with
domains whose boundaries contain corners. The MRC is formulated, the
algorithm based on it is described and numerical results are presented.

PACS numbers: 02.30.Zz, 02.60.−x, 43.20.Fn
Mathematics Subject Classification: 35R30

1. Introduction

The goal of this work is to show that the numerical solution of the obstacle scattering problem
based on the modified Rayleigh conjecture (MRC) method is a competitive alternative to the
boundary integral equations method (BIEM), and that it has numerical advantages which may
be especially important in three-dimensional scattering problems with non-smooth domains,
for example, with domains whose boundaries contain corners. Several numerical examples
illustrate the above conclusions. In section 1 the statement of the problem is formulated in
the two-dimensional case. In section 2 the MRC is formulated (see [8]), and its extension
(theorem 2.2) convenient for the numerical realization is given. In section 3 an algorithm,
based on MRC, for solving the direct scattering problem is given. In section 4 the results of
the numerical experiments are presented.

We start with the formulation of the obstacle scattering problem. In this paper, we consider
the Dirichlet boundary condition, but the method we develop can be used for the Neumann
and Robin boundary conditions.

Let an obstacle be a bounded domain D ⊂ R
2 with a Lipschitz boundary �. Fix a

frequency k > 0 and denote the exterior domain by D′ = R
2 \ D̄.
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A solution v(x) of the Helmholtz equation

�v + k2v = 0 x ∈ D′ (1.1)

is called outgoing if it satisfies the Sommerfeld radiation condition

lim
|x|→∞

√
|x|
(
∂v

∂|x| − ikv

)
= 0 (1.2)

where the limit is attained uniformly for all the directions x/|x|, x ∈ R
2.

The exterior Dirichlet problem consists in finding an outgoing solution of the Helmholtz
equation (1.1) which satisfies the boundary condition

v = f x ∈ � (1.3)

where f is a continuous function, see [6] for the existence and uniqueness results for this
problem.

A particular case of the above problem is the direct acoustic obstacle scattering problem.
Let α ∈ S1, and the incident field be

ui(x) = eikx·α. (1.4)

The problem is to find the total field

u(x, k) = ui + us x ∈ D′ (1.5)

such that

u = 0 x ∈ � (1.6)

and the scattered field us satisfies (1.1) and (1.2).
It is known (see e.g., [6]), that every outgoing solution v(x), x ∈ D′ has an asymptotic

representation

v(x) = eik|x|
√|x|

{
A(α′) +O

(
1

|x|
)}

|x| → ∞ (1.7)

where α′ = x/|x|, α′ ∈ S1. The function A(α′) := Av(α
′) is called the far field pattern of u.

For the direct acoustic obstacle scattering problem this representation takes the form

us(x) = eik|x|
√|x|

{
A(α′, α) +O

(
1

|x|
)}

|x| → ∞ (1.8)

where the uniquely defined functionA(α′, α) is called the scattering amplitude of the obstacle
scattering problem.

Let Jl(t) and Yl(t) be the Bessel and Neumann functions of the integer order l. The
first Hankel function of order l is defined by H(1)

l = Jl + iNl . Suppose that the circle
BR = {x ∈ R

2 : |x| � R} contains D. Then, in the region |x| > R, the outgoing solution of
the exterior Dirichlet problem (1.1)–(1.3) has a unique representation

v(x) =
∞∑

l=−∞
alH

(1)
l (k|x|) eilθ (1.9)

where x/|x| = (cos(θ), sin(θ)).
The Rayleigh conjecture (RC) states that the series (1.9) converges up to the boundary

�. This conjecture is false, see [1, 4, 6]. Recently Ramm [8] established a modified Rayleigh
conjecture (MRC). In this paper, the MRC approach is demonstrated to be a viable alternative
for computational direct scattering problems. In [8] a method for solving the inverse obstacle
scattering problem is also proposed. We plan to work on its numerical implementation in the
near future. In [7] multidimensional inverse scattering problems are studied.
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2. Modified Rayleigh conjecture (MRC)

A 2D version of the main result from [8] is

Theorem 2.1. Let (1.9) be the unique representation of the outgoing solution v(x) of the
exterior Dirichlet problem (1.1)–(1.3). Fix an ε > 0.

Then there exists a positive integer L = L(ε) and the coefficients cl = cl(ε), l =
0,±1, . . . ,±L such that

(i) ∥∥∥∥∥f (x)−
L∑

l=−L
clH

(1)
l (k|x|) eilθ

∥∥∥∥∥
L2(�)

� ε

(ii) ∥∥∥∥∥v(x)−
L∑

l=−L
clH

(1)
l (k|x|) eilθ

∥∥∥∥∥ = O(ε) ε → 0

where

‖ · ‖ = ‖ · ‖Hm
loc(D

′) + ‖ · ‖L2(D′;(1+|x|)−γ )

γ > 1,m > 0 is an arbitrary integer, Hm is the Sobolev space and
(iii)

cl(ε) → al as ε → 0 l = 0,±1,±2, . . . .

Proof. (i) Without loss of generality we can assume that the origin is an interior point of the
domain D. Therefore there exists δ > 0 such that Bδ = {x ∈ R

2 : |x| < δ} ∩ � = ∅, where �
is the boundary of D. Suppose that a parametric equation of � is

r(t) = 〈x1(t), x2(t)〉 0 � t < 2π. (2.1)

Let r(t) = |r(t)|. Following [6], it is enough to show that functions

ψl(t) = H
(1)
l (k|x|) eilθ

∣∣
�

= H
(1)
l (k|r(t)|) eilθ (t) 0 � t < 2π (2.2)

where eiθ(t) = r(t)/r(t), and l = 0,±1,±2 . . . , form a complete system in L2(�). Here and
in the following unit vectors in R

2 and the corresponding complex numbers are identified as
needed.

Suppose that there exists g ∈ L2(�) such that∫ 2π

0
g(t)ψl(t) dt = 0 l = 0,±1,±2, . . . . (2.3)

By the addition theorem for any x, y ∈ R
2 with |x| > |y| we have

H
(1)
0 (k|x − y|) =

∞∑
l=−∞

H
(1)
l (k|x|) eilθxJl(k|y|) e−ilθy (2.4)

where x/|x| = eiθx and y/|y| = eiθy .
Recalling that the fundamental solution to the Helmholtz equation in two dimensions is

�(x, y) = i

4
H
(1)
0 (k|x − y|) x �= y

define the single-layer potential of g by
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w(y) = i

4

∫
�

H
(1)
0 (k|x − y|)g(x) ds(x) (2.5)

= i

4

∞∑
l=−∞

Jl(k|y|) e−ilθy

∫ 2π

0
g(t)ψl(t) dt y ∈ Bδ. (2.6)

Thus w(y) = 0 for any y ∈ Bδ . By the unique continuation property,w(y) is identically
equal to zero in D. The continuity of the single-layer potential implies that w(y) = 0, y ∈ �.
Sincew(y) is an outgoing solution of the Helmholtz equation inD′, vanishing on �, it follows
thatw(y) = 0, y ∈ D′. Finally, the jump properties of the normal derivative of the single-layer
potential imply that g = 0 in L2(�).

(ii) Let the coefficients cl = cl(ε) be chosen according to (i). Denote

wε(x) = v(x)−
L∑

l=−L
clH

(1)
l (k|x|) eilθ . (2.7)

According to Green’s formula

wε(x) = −
∫
�

∂�(x, y)

∂ν(y)
wε(y) ds(y) x ∈ D′. (2.8)

Let D ⊂ BR = {x ∈ R
2 : |x| < R}, and SR be the boundary of BR . Since

‖wε‖L2(�) < ε (2.9)

and ∣∣∣∣∂�(x, y)∂ν(y)

∣∣∣∣ � c

1 +
√|x| |x| � R

it follows that

‖wε‖L2(SR) < cε (2.10)

and

|wε(x)| < cε(1 +
√

|x|)−1 |x| � R. (2.11)

Therefore,wε is O(ε) in the norm L2(D′; (1 +
√|x|)−γ ) for γ > 1.

Let D′
R = BR \ D. Choose R such that k2 is not a Dirichlet eigenvalue of −� in D′

R .
Then wε satisfies the following elliptic estimate from ([3], p 189):

‖wε‖Hm(D′
R)

� c
[‖(� + k2)wε‖Hm−2(D′

R)
+ ‖wε‖Hm−1/2(SR) + ‖wε‖Hm−1/2(�)

]
. (2.12)

Since (� + k2)wε = 0 in D′ this formula with m = 1/2 together with (2.9) and (2.10) gives

‖wε‖H 1/2(D′
R)

� cε. (2.13)

From local elliptic estimates and (2.13) it follows that (ii) of theorem 2.1 holds with any m.
(iii) Let x ∈ SR . By (2.7)

wε(x) =
L∑

l=−L
(al − cl)H

(1)
l (kR) eilθ +

∑
l>|L|

alH
(1)
l (kR) eilθ . (2.14)

Bessel’s inequality and (2.10) imply

|al − cl| � ‖wε‖L2(SR) < cε

and (iii) follows. �

According to theorem 2.1 the computation of the outgoing solution of (1.1)–(1.3) is
reduced to the approximation of the boundary values in (1.3) by functions ψl(t). A direct
implementation of the above algorithm is efficient for domains D not very different from a
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circle, e.g. for an ellipse with a small eccentricity (see numerical experiments in the next
section). The numerical difficulties happen because the Neumann functions Nl with large
values of l are bigger than Nl with small values of l by many orders of magnitude. A finite
precision of numerical computations makes it necessary to keep the values of L not high, e.g.
L � 20. This restriction can be remedied by adding to the set {ψl} similar functions, centred
at other interior points xj ∈ D. Such an approach is justified by the following theorem:

Theorem 2.2. Let v(x) be the outgoing solution of the exterior Dirichlet problem (1.1)–(1.3).
Suppose that points x1, x2, . . . , xJ are in the interior of D, and ε > 0.

Then

(i) there exists a positive integer L = L(ε) and the coefficients clj = clj (ε), l =
0,±1, . . . ,±L, j = 1, 2, . . . , J such that∥∥∥∥∥∥f (x)−

J∑
j=1

L∑
l=−L

cljH
(1)
l (k|x − xj |) eilθj

∥∥∥∥∥∥
L2(�)

� ε (2.15)

where (x − xj )/|x − xj | = eiθj .
(ii) Let

vε(x) =
J∑
j=1

L∑
l=−L

cljH
(1)
l (k|x − xj |) eilθj (2.16)

then

‖v(x)− vε(x)‖ = O(ε) ε → 0

where

‖ · ‖ = ‖ · ‖Hm
loc(D

′) + ‖ · ‖L2(D′;(1+|x|)−γ )
γ > 1,m > 0 is an arbitrary integer, Hm is the Sobolev space.

(iii) The far field pattern of the approximate solution vε(x) is given by

Avε (α
′) =

√
2

πk
e−i π4

J∑
j=1

(
e−ikα′ ·xj

L∑
l=−L

clj (−i)l eilθ

)
(2.17)

where α′ = x/|x| = eiθ .

Proof. Items (i) and (ii) follow from theorem 2.1. For item (iii) note that

H(1)
n (t) =

√
2

πt
ei(t−πn/2−π/4)

{
1 +O

(
1

t

)}
t → ∞

and

|x − xj | = |x| − α′ · xj +O

(
1

|x|
)

|x| → ∞.

Therefore,

H
(1)
l (k|x − xj |) = eik|x|

√|x|

{√
2

πk
ei(−kα′ ·xj−πl/2−π/4) +O

(
1

|x|
)}

|x| → ∞.

Finally,

eiθj = x − xj

|x − xj | = α′ +O

(
1

|x|
)

|x| → ∞. �

3. Direct scattering problem via MRC

According to theorem 2.2 one can approximate the scattered field us of the direct obstacle
scattering problem (1.4)–(1.6) by minimizing (2.15) with f (x) = −ui(x), x ∈ �. More
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precisely, the algorithm can be described as follows:
Initialization. Fix an integer L > 0 and an ε > 0. Choose x1, x2, . . . , xJ in the interior

of D. If r(t), 0 � t < 2π is an equation of the boundary �, let

ψlj (t) = H
(1)
l (k|r(t)− xj |) eilθj (t) j = 1, 2, . . . , J l = 0,±1,±2, . . . ,±L (3.1)

g(t) = −ui(r(t)) = −eikr(t)·α (3.2)

where (r(t)− xj )/|r(t)− xj | = eiθj (t).
Minimization. Minimize

�(c) =
∥∥∥∥∥∥g(t)−

J∑
j=1

L∑
l=−L

cljψlj (t)

∥∥∥∥∥∥
L2(0,2π)

c = {clj } (3.3)

for c ∈ C
N,N = (2L + 1)J .

If the minimum of� in (3.3) is smaller than the prescribed tolerance ε, then the scattered
field is approximated by vε(x), x ∈ D′, given by (2.16), and its scattering amplitude A(α′, α)
is computed by formula (2.17).

Numerical experiments also show that it may be beneficial to complement the set of
functions ψlj by other known outgoing solutions in D′.

An example of such a solution v(x) is the field scattered by a sphereBa(x0) ⊂ D of radius
a > 0, subjected to the same incident wave ui(x) = eikα·x as in the original direct scattering
problem. It is given by

v(x) = −eikα·x0

∞∑
l=−∞

il
Jl(ka)

H
(1)
l (ka)

H
(1)
l (k|x − x0|) eil(θ0−β) (3.4)

and, because θ0 → θ as |x| → ∞, x/|x| = α′, its scattering amplitude is

Av(α
′, α) = −

√
2

πk
e−i π4 eik(α−α′)·x0

∞∑
l=−∞

Jl(ka)

H
(1)
l (ka)

eil(θ−β) (3.5)

where α′ = x/|x| = eiθ , α = eiβ and (x − x0)/|x − x0| = eiθ0 .
The numerical implementation of the minimization algorithm begins with the choice of

M knots 0 = t1 < t2 < · · · < tM < 2π , and points xj , j = 1, . . . , J in the interior of D. Then
the values {ψlj (tm)}Mm=1 form N = (2L + 1)J vectors a(n), n = 1, 2, . . . , N of length M. Let
b = {−ui(tm)}Mm=1. Then the minimization problem (3.3) is reduced to the finite-dimensional
minimization problem

min{‖Ac − b‖, c ∈ C
N } (3.6)

where A is the matrix containing vectors a(n), n = 1, 2, . . . , N as its columns. If other
outgoing solutions are used in addition to functions ψlj , the size of matrix A is increased
accordingly.

We use the singular value decomposition (SVD) method (see e.g., [5]) to minimize (3.6).
Small singular values of the matrix A are used to identify and delete linearly dependent
or almost linearly dependent combinations of vectors a(n). This spectral cut-off makes the
minimization process stable. The entire algorithm is summarized below. We denote by V H

the complex conjugate transpose of a matrix V . Also, by definition, the inner product in C
N

complex conjugates its first component.
Iterative MRC. Fix an ε > 0, an integer L > 0, and wmin > 0.

Choose M knots 0 = t1 < t2 < · · · < tM < 2π , and points xj , j = 1, . . . , J in the
interior of D.

Let N = (2L + 1)J .
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(1) Initialization

(a) Form vectors

a(n) = {ψlj (tm)}Mm=1 |l| � L j = 1, 2, . . . , J

and the matrix A of size M × N , whose columns are the vectors a(n).
(b) Form vector

b = {−ui(tm)}Mm=1.

(c) Use singular value decomposition method to represent matrix A as

A = UWV H

where theM ×N matrix U has orthonormal columns u(n), n = 1, . . . , N , the square
N × N matrix V has orthonormal columns v(n), n = 1, . . . , N and the diagonal
squareN×N matrixW = (wn)

N
n=1 is composed of the (nonnegative) singular values

of A.
(d) Let � ⊂ {1, 2, . . . , N} be defined by

� = {n : wn � wmin}.
(e) Let p = 0.

(2) Iterative step

(a) Let p := p + 1.
(b) Form the set

P = {n ∈ � : wn is among p largest singular values of A}.
(c) Compute the normalized residual

rmin
p = 1√

M

√
‖b‖2 −

∑
n∈P

|〈u(n),b〉|2.

(3) Stopping criterion

(a) If rmin
p � ε, then stop.

The minimizer is given by

c =
∑
n∈P

1

wn
〈u(n),b〉v(n).

Compute the scattered field vsε using (2.16) and the far field pattern using (2.17).
(b) If rmin

p > ε, and P �= � repeat the iterative step (2).
(c) Otherwise, the procedure has failed.

4. Numerical experiments

The results obtained by the MRC method (for smooth boundary�) were compared to the results
obtained by the boundary integral equation method (BIEM) as presented in [2]. Accordingly,
to find the outgoing solution v(x) of the exterior Dirichlet problem (1.1)–(1.3) one has to solve
the integral equation

ϕ(x) +
∫
�

{
∂�(x, y)

∂ν(y)
− iη�(x, y)

}
ϕ(y) ds(y) = 2f (x) x ∈ D′ (4.1)

for the density function ϕ ∈ C(�). Following the recommendations in [2] the value for the
real coupling parameter η was chosen to be equal to the wave number k. The above integral
equation was solved using the Nyström method, see [2], section 3.5.
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Table 1. Normalized residuals attained in the numerical experiments.

Experiment J k α rmin r̂min

I 4 1.0 (1.0, 0.0) 0.000 201 0.000 096
4 1.0 (0.0, 1.0) 0.000 357 0.000 324
4 5.0 (1.0, 0.0) 0.001 309 0.000 556
4 5.0 (0.0, 1.0) 0.007 228 0.002 156

II 16 1.0 (1.0, 0.0) 0.003 555 0.003 555
16 1.0 (0.0, 1.0) 0.002 169 0.002 169
16 5.0 (1.0, 0.0) 0.009 673 0.009 286
16 5.0 (0.0, 1.0) 0.007 291 0.007 056

III 16 1.0 (1.0, 0.0) 0.008 281 0.008 281
16 1.0 (0.0, 1.0) 0.007 523 0.007 523
16 5.0 (1.0, 0.0) 0.021 571 0.021 530
16 5.0 (0.0, 1.0) 0.024 360 0.024 206

IV 32 1.0 (1.0, 0.0) 0.006 610 0.006 610
32 1.0 (0.0, 1.0) 0.006 785 0.006 785
32 5.0 (1.0, 0.0) 0.034 027 0.033 218
32 5.0 (0.0, 1.0) 0.040 129 0.038 558

After the density ϕ is computed, the far field pattern can be obtained from

Av(α
′) = e−i π4√

8πk

∫
�

{kν(y) · α′ + η} e−ikα′ ·yϕ(y) ds(y) (4.2)

where ν is the exterior unit normal vector to the boundary �.
We conducted numerical experiments for four obstacles: two ellipses of different

eccentricity, a kite and a triangle. Each case was tested for wave numbers k = 1.0 and
k = 5.0. Each obstacle was subjected to incident waves corresponding to α = (1.0, 0.0) and
α = (0.0, 1.0). The results are shown in table 1. The column J shows the number of the interior
points xj used in the approximation (3.3). The choice of the points xj was different in each
experiment. It is indicated below together with the description of the experiments. The column
rmin shows the smallest value of the normalized residual achieved by the MRC minimization
method in step 2(c) of the iterative MRC algorithm described in the previous section.

We also tested the algorithm with the outgoing solutions (3.4) induced by spheres in D.
These scattering solutions were used in addition to functions ψlj . The spheres were centred
at the same interior points xj chosen in the experiment. The radius of each of the spheres is
chosen to be the biggest one that fits it within the domain D. Thus we allow the spheres to
intersect each other, but still be entirely inside the domain D. The column with r̂min shows the
values of the normalized residual attained in this version of the MRC algorithm. ValuesL = 5
and M = 720 were used in all the experiments. The 720 knots tm were uniformly distributed
on [0, 2π].

Table 2 shows the scattering amplitude for vectors α′ at every multiple of 30◦ for
experiment I, and the ratio (denoted by MRC/BIEM) of the scattering amplitude computed by
the MRC method and by the BIEM. The BIEM was implemented as described in the beginning
of this section with n = 64 (see [2]). The scattering amplitudes shown correspond to the last
column in table 1.

Experiment I. The boundary � is an ellipse described by

r(t) = (2.0 cos t, sin t) 0 � t < 2π. (4.3)
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Figure 1. The kite-shaped obstacle used in experiment II.

Table 2. Scattering amplitude A(α′, α) in experiment I for α = (1.0, 0.0) and k = 5.0.

α′ A(α′, α) MRC/BIEM

0◦ −0.016258 − 0.642831i 1.000115 + 0.000082i
30◦ 0.413163 + 0.337149i 1.000213 − 0.000035i
60◦ 0.273417 − 0.621033i 0.999987 + 0.000300i
90◦ −3.000307 + 2.365251i 0.999990 − 0.000084i

120◦ 0.273418 − 0.621033i 0.999912 + 0.000406i
150◦ 0.413163 + 0.337149i 1.000135 − 0.000022i
180◦ −0.016258 − 0.642831i 1.000001 − 0.000001i
210◦ −0.341318 − 0.799098i 1.000041 − 0.000014i
240◦ 0.482573 − 1.109062i 0.999997 − 0.000034i
270◦ 1.176199 − 0.783961i 0.999960 − 0.000041i
300◦ 0.482572 − 1.109062i 1.000039 − 0.000093i
330◦ −0.341318 − 0.799098i 1.000002 + 0.000016i

The MRC minimization used four interior points xj = 0.7r
(
π(j−1)

2

)
, j = 1, . . . , 4. Run time

for the MRC was 2 s versus 25 s for the BIEM on a 333 MHz PC.

Experiment II. The kite-shaped boundary � (see [2], section 3.5) is described by

r(t) = (−0.65 + cos t + 0.65 cos 2t, 1.5 sin t) 0 � t < 2π (4.4)

see figure 1. The MRC minimization used 16 interior points xj = 0.9r
(
π(j−1)

8

)
, j = 1, . . . , 16.

Run time for the MRC was 33 s versus 44 s for the BIEM.
Experiment III. The boundary� is the triangle with vertices at (−1.0, 0.0) and (1.0,±1.0).

The MRC minimization used 16 interior points xj = 0.9r
(
π(j−1)

8

)
, j = 1, . . . , 16. Run

time for the MRC was about 30 s. See figure 2 for the scattering amplitude A(α′, α) for
α = (0.0, 1.0), k = 5.0 obtained by the MRC method with these parameters.

Experiment IV. The boundary � is an ellipse described by

r(t) = (0.1 cos t, sin t) 0 � t < 2π. (4.5)
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Figure 2. Real (solid line) and imaginary (dotted line) parts of the scattering amplitude A(α′, α)
for experiment III, α = (0.0, 1.0) and k = 5.0.

The MRC minimization used 32 interior points xj = 0.95r
(
π(j−1)

16

)
, j = 1, . . . , 32. Run time

for the MRC was about 140 s.

5. Conclusions

Computation of scattering solutions via the modified Rayleigh conjecture method provides an
alternative to the boundary integral equation method. BIEM representations (4.1) and (4.2)
are exact, while MRC provides an approximate method. The advantages of MRC consist
in its easy implementation in both 2D and 3D cases. Also its performance is shown to be
better, or, at least, equal to the BIEM. In contrast to BIEM, no additional programming is
needed for domains with corners. Additional studies are needed to fine-tune the performance
of the MRC algorithm, but it seems that the most dramatic improvement over the BIEM may
be for 3D obstacles. The usage of the outgoing waves, scattered by spheres, improves the
algorithm, especially if their centres are located away from the boundary of the obstacle. The
improvement is more pronounced for values of L < 5. The choice of the spheres inscribed in
the domain D was the most efficient in the conducted experiments.
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